

RECOMMENDED COLUMN CLEANING AND REGENERATING PROCEDURES

Use the cleaning routine that matches the properties of the column an what you believe is contaminating it. Flush columns with 20 column volumes (80 mL total for 4.6 x 250 mm column) of HPLC-grade solvents. Run columns in reverse flow direction, with the outlet disconnected from the detector. Cleaning efficiency is increased by increasing mobile phase temperature to 35-55 °C. If the column performance is poor after regenerating and cleaning, call us.

Silica-based partic	les		Polymer-based particles : Polymer C18 [™]
Non-polar-bonded pha Polar Samples 1. Water 2. Methanol 3. THF 4. Methanol 5. Water 6. Mobile phase	ases (Carotenoid, C18, Octyl, YMCb Non-polar Samples 1. Isopropanol 2. THF 3. Dichlormethane 4. Hexane 5. Isopropanol 6. Mobile phase	asic TM , J'sphere TM , Phenyl, Butyl, TMS): Proteinaceous Samples Option 1: Inject repeated aliquots of DMSO Option 2: Gradient of 10 to 90% B where: A = 0.1% TFA in water B = 0.1% TFA in CH2CN Option 3: Flush column with 7M guanidine HCl, or 7M urea	 Flush column with mobile phase but omit buffers or salts (i.e. just organic and water, acetonitrile is preferable) Run a gradient to 100 % organic Flush with twenty column volumes of THF Flush with twenty column volumes of acetonitrile Run a gradient back to starting mobile phase conditions, ommitting buffers an salts Re-equilibrate in mobile phase
Polar-bonded phases Polar Samples 1. Water 2. Methanol 3. THF 4. Methanol 5. Water 6. Mobile phase	(Cyano, Diol, Amino, PVA-sil TM , Silica Non-polar Samples 1. Chloroform 2. Methanol 3. Dichlormethane 4. Heptane or Isocyanate 5. Isopropanol 6. Mobile phase	a):	